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Abstract 

In  this  paper we present a full-wave method for determining  the effective permittivity for ran- 

dom  media in three  dimensions.  The  type of media  addressed  is  composed of spherical dielectric 

particles  in a homogeneous  dielectric  background. The particle  volume  fraction  ranges  from 0 to 

40 percent  and  dielectric  contrast  may be significantly different from  the  background  medium. 

The  method described relies on the  T-matrix  approach for solving Maxwell's equations  using 

a spherical wave expansion in conjunction  with a Monte-Carlo  simulation for calculating  the 

mean  scattered field confined within a prescribed  fictitious boundary. To find the effective 

permittivity,  the  mean  scattered field is compared  with  that of a homogeneous  scatterer whose 

shape is defined by the fictitious  boundary  and  its dielectric constant  is varied  until the  scat- 

tered fields are  matched.  A  complete  description of the  T-matrix  approach  is given along  with 

an  explanation of why the recursive form of this  technique  (RATMA [3]) cannot  be used for ad- 

dressing this  problem.  After  the  method  development is completed,  the  results of our  numerical 

technique  are  compared  against  the  theoretical  methods of the  quasi-crystalline  approximation 

and  the effective field approximation  to  demonstrate  the region of validity of the  theoretical 

methods.  The  examples  contained  within  the  paper use between 30 and 120 included  spheres 

(with  radii  ranging  from  from ka  = 0.6 to 0.8) within a larger,  fictitious  sphere of diameter 

k D  = 8.4. 

1 Introduction 
A  fundamental  macroscopic  electromagnetic  characteristic of any  material is that of its per- 

mittivity.  Permittivity is the  scalar  constant  that  relates  electric flux density of the electric 

field, and  ultimately, for a large  majority of media  that  are  non-magnetic, is the  constant  that 

describes the  phase  and  group velocity as well as power loss of the field as  it  propagates  through 
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the  medium.  When  the  medium  under  consideration is  composed of a number of discrete com- 

ponents,  the  net  permittivity of the  material is termed  the eflective permittivity. The loss of 

power to a propagating  coherent field can  take  on  one of two  forms,  that of absorption  (and 

subsequent  conversion to  thermal energy) and  that of scattering,  whereby  the  coherent field is 

scattered  into a generally  radiating  incoherent  field.  This  second  form of power loss is much 

more difficult to  characterize  than  absorption  because of the complex  nature of scattering. 

The simplest  approach  for  determining effective permittivity  is  to  ignore  the effect of scattering 

on the  mean field which illuminates  the  components of the  medium.  In  the  derivation of the 

Polder-Van Santen  mixing  formula [9], the  mean field induces a dipole  moment  within  the 

fundamental  components of the  medium, which in  turn  can  be used to  derive the effective 

permittivity. Because of the  assumption  regarding  the  mean field and ignoring the  scattering, 

it is inherently a low-frequency approach. 

When  scattering  is  taken  into  account,  the  problem becomes  considerably  more  complex.  Scat- 

tering is an  important  component for determining effective permittivity  when  the  scatterer size 

is on the  same  dimensional  scale  as  the  observing wavelength  (i.e. a low frequency  estimation 

can  no longer be  applied).  In  this  instance  the  interaction of the  incident field with  all of 

the  scatterers  must  be  simultaneously  taken  into  account.  Depending  on  the  density of the 

medium,  this  multiple  scattering  may  be  theoretically  truncated so that  the  mean field can  be 

determined  and  the  problem solved.  Such  is the case  for  Foldy’s approximation  (also called the 

effective field approximation), for single scattering,  and  the  Quasi-Crystalline  approximation, 

which accounts for all pair-wise scattering. 

This  paper  addresses  the  problem of numerically  determining the  permittivity of a material  that 

contains  discrete  dielectric  (non-tenuous)  components whose dimension  is  on the  same  order of 

the  electromagnetic  field,  taking  into  account  all  orders of multiple  scattering.  The  approach 

described  stems  from  an  extensive  study  that  has  been  accomplished for addressing  the two- 

dimensional  version of this  problem.  That  is,  to develop a reliable and  consistent  numerical 

technique that  can  determine  both  real  and  imaginary  components of effective permittivity 

which is not  limited  in  principal  to  the  number  density of scatterers,  or  to  a  high  ratio of 

absorption  to  scattering losses within  the  system. 
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We begin by first reviewing the  technique  and  results  as  applied to  the two  dimensional  random 

media  problem.  While  not  critical to  the  technique overall, the two dimensional version utilized 

the  method of moments to solve Maxwell’s equations to  determine  the  scattered fields. Because 

of the  additional  dimension in the  3D  problem,  it  has  been  necessary  to  implement  an  alternative 

numerical  approach to solve Maxwell’s equations for the  random  medium. For this  study we 

chose the  T-matrix  method first  proposed by Waterman [18] and  later refined by Chew [3]. This 

approach,  along  with its limitations, is discussed in the second section of this  paper.  While 

the recursive form of T-matrix  technique  did  not prove to be  appropriate for our  application, 

we were nevertheless able to use the  T-matrix  method in its more  traditional  form.  Although 

limiting  the  solution  space  (in  terms of number  density) for determining effective permittivity, 

we will demonstrate  its  application  as well as  provide a comparison  with  theoretically derived 

results. 

2 Two-dimensional Technique For Characterizing teff 

The  technique described  here is a numerical  method for determining  the effective permittivity 

of a random  medium.  This  method,  based  upon  the  coherent  scattered  electric field from a 

bounded  volume, is developed  in  contrast to  an incoherent method for determining  the  same 

quantity [16]. The  coherent  numerical  method  that follows, and  its  application, have been 

developed by Siqueira  and  Sarabandi [11,12,14] as well as  Zurk  et  al., [19,20]. 

The concept itself is straightforward  and is explained  here  as a prelude to  the 3-D problem 

(for a more  complete  description see [13]). We begin by extracting a bounded  sample of the 

random  medium  and  illuminating  it  with a known  electric field. The  scattered field from 

this  sample will be a superposition of the coherent field, resulting  from  the  boundary,  and 

the incoherent field, due  to  the inhomogeneities  within the  boundary.  Averaging  together  the 

complex  valued  scattered fields for many  samples of the  medium at each observation angle 

will yield only the  coherent field which is directly  related  to  the  shape of the  boundary  and  the 

effective permittivity of the  random  medium (see Figure 1). Given the fact that  we have control 

of the  boundary size and  shape, a canonical shape  can  be chosen whose scattering  solution is 

known  or  may be  numerically  determined. By comparing  the  coherent  scattered field from the 
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Figure 1: Model  for  numerically  determining teff for a random  medium. 

random  medium  samples  with  the  scattered field from the canonical  shape,  the  permittivity of 

the canonical  shape  can  be  changed  until  the  two  sets of scattered fields are  the  same. 

The process  described  above  has  been  implemented and  tested  extensively  in  two  dimensions 

as well as  compared to  theoretical  models. For a complete  comparison of the 2-D numerical 

technique  with  the  theoretical  models of the mixing  formula,  Foldy's  approximation  and  the 

Quasi-crystalline  approximation,  the  reader is  referred to [14]. 

3 T-matrix 

In  two-dimensions the  method of moments was used to  solve Maxwell's equations  because of 

the exact  nature of the  solution for canonical inclusion shapes of squares  and circles. In  three 

dimensions  however,  application of the  method of moments is much more  cumbersome  due 

to  the large  number of unknowns  (vector  volume  currents)  inherent to  the problem  and  the 

complexity of discretizing  these  currents. As a consequence, it is unrealistic to  solve any  three- 

dimensional  large  scale  problems  using the  method of moments. To  circumvent  this difficulty, 

the  T-matrix  method  (first  proposed by Waterman [18], Peterson  and  Strom [9], and  later 

developed into a recursive  technique,  RATMA, by Wang  and Chew [17]) was used to  solve for 

the  scattering  due  to a large  number of scatterers.  The recursive  form of the  T-matrix  method 

is particularly  appealing  because  the  computational  complexity scales as nz2x rather  than nkax 

of the  traditional  approach,  where nmax is the  total  number of scatterers  (this  assumes  that 

the enclosing  volume  scales  linearly with nmax). Because the development and  application 

of the recursive T-matrix  solution  technique is  fairly  recent, it is reviewed here for clarity, 
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completeness,  and also to highlight its uses and  limitations. 

In  summary,  the  T-matrix  has  the following advantages: 

1. the  spherical wave expansion of the  T-matrix  automatically  accounts for near-field inter- 

action 

2. the  T-matrix could  potentially  be used iteratively, to  mitigate  the necessity for  inverting 

large matrices 

3. the  T-matrix works best for spherically shaped  particles,  a  good  approximation for media 

such as sand  and snow  grains.  More  complex  geometries  could  be  approximated by 

building collections of spheres or by employing  extended  boundary  conditions 

4. depending on the  dimension/frequency scale of the  scattering  components,  the  number of 

terms used in the  spherical wave expansion  can  be  controlled 

5. the  T-matrix is exact given a sufficient number of spherical wave basis functions. 

3.1 Formulation 

The  formulation of the generalized Recursive Aggregate  T-Matrix  Algorithm  (RATMA) is based 

upon  the  spherical wave expansion of electromagnetic fields. These  functions,  composed of the 

field vectors M and  are  arranged  into a vector 5 of varying  spherical waveform  expansions. 

In  the first case, the vectors are  three-dimensional,  one  dimension for each direction in  space. 

For however, the vectors have a dimension of 2Pma,(Pmax + 2), where the  parameter, P,,, 

will be  explained  shortly.  Because of the  greater need to work with vectors of spherical wave 

functions in this  context, vector field quantities (such as %?f and x)  normally specified by bold 

face  type  and  an  overbar will revert to non-emphasized  characters  (i.e. M and N )  with  the 

exception of positional vectors  such as F .  Thus, a vector of spherical wave functions  can be 

written  as 
- 
XP = [...Mlm.. . . .. NLm.. . I t  (1) 



which is a column vector (the  superscript t indicating a matrix  transpose)  and  where 

1 
Mlm = V X (TI$) and Nlm = -V X M 

k0 

I$lm = hil)(kor)Km(Q, 4 )  and RgI$lm = j l ( k o r ) ~ m ( ~ ,  4 ) .  (3) 

In  the above equations, j ,  and hi1) are  the  spherical Bessel and Hankel functions of order, I ,  

and xm is the  associated  Legendre  polynomial, defined in this  paper  as 

where Plm(cos 0) are  the  ordinary  Legendre  polynomials given in [l]. It is necessary to  exactly 

specify which form of the  associated  Legendre  polynomial is being used because the convention 

varies from  application to  application (see [3, pg. 3951 vs. [16]). 

where Sine is a column vector of incident field coefficients. For plane wave incidence, the incident 

field coefficients are given by: 

= 
(6) 

which in itself contains vector field quantities,  making  the expression  in  (5) a dyad;  the lead- 

ing vector field relating  to  the received polarization  and  the  trailing vector field the  transmit 

polarization.  The  functions, s and t are  related to  the  associated  Legendre  polynomial  and 

its derivative and  can  be  found in [14, pg. 1731. In  the  above expressions, p refers to  the 

order of the  dipole  moment,  and q is the dipole number  such  that q = { -p, -p  + 1, ..., p }  and 

p = 1, .. ., I'm,,, where Pmax is the  truncation  number for the  number dipole moments used in 

the calculation. For a given Pma,, the  number of elements  in Einc is 2Pma,(Pm,, + 2). 

Similarly, the  scattered  electric field can  be expressed in terms of the  scattered field coefficients, 

P a ,  such that 
E sca = q t a s c a  - 

(7) 
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The  T-matrix (or  transition  matrix) is then defined by the  relation 

For a single sphere,  centered at the origin, the  T-Matrix  reverts  to  the Mie series. For the 

more  general problem,  it will be necessary to  sum  together  the effects of a number of spheres, 

displaced  from the origin by the vector mi. For a single sphere,  this  problem  can  be easily 

addressed  using the vector translation  theorem,  as in 

In  the  above  equation,  the vector translation  matrix pij indicates a translation of spherical 

wave functions  centered  around  the ith coordinate  system  to  the jth coordinate  system. 

- 

In (9) it  can  be seen that  the  incident field vector in global coordinates is transformed to 

the local coordinates of the  scatterer,  multiplied by the  T-matrix,  transformed back to  the 

global coordinate  system  and finally multiplied by the  spherical wave basis functions in global 

coordinates. Use of the vector translation  theorem is dependent  on  the  point of observation 

with  respect  to  the vector that  describes the  translation of coordinates  (this will be discussed 

shortly). 

The  fundamental  equation  for  the  direct  T-matrix  algorithm relies on the  continued  application 

of this  transformation  via  the  application of the different forms of the vector addition  theorem. 

Figure 2 illustrates  the  multiple  scattering  equation given by [9; 14, pg. 4521 

In (lo),  u l ( j )  is the vector of exciting field coefficients which describe  the field on the  surface s 

encompassing the  jthparticle  and E is a vector translation  matrix  similar  to p with  the  exception 

that  spherical  Hankel  functions  are used instead of spherical Bessel functions.  In ( lo) ,  Ti(,) 
refers to  the single scattering  matrix of the  ithparticle in the absence of other  particles.  The 

fields on this surface are  the  sum of the  scattered fields from  the  remaining nmax - 1 particles 

plus the  incident field. The  exciting field coefficients, d j )  are  unknown  and  must  be solved for 

by the  matrix  equation  implied by (10). Once  the  exciting fields are known for each particle, 

- 
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Figure 2: Illustration of spherical wave vector  translation  in  the  multiple  scattering  T-matrix 
equation 

the  scattered field can  be  determined by summing up all of the  contributions  from  all of the 

particles  together. 

The  mathematical  rules for the  application of the vector addition  theorem for  spherical waves 

are often not well illustrated in the  literature.  In reference to  Figure 2, for an observation  point 

on the surface s and  the  translation of spherical wave functions  centered  on  the  ithcoordinate 

system to  the  jthcoordinate  system,  the  vector  translation  theorem is given by 

The incident field in (10) is  expanded  in  terms of regular  spherical wave functions, Rg\k centered 

at the global  origin.  Thus, (13) is  used in (10) to  translate  these  functions  to a coordinate  system 

centered at the  jthparticle.  Similarly,  the  product of Fi(l) . d i )  represents  outgoing  spherical 

waves, \k ,  whose  origin  is the  center of the  ithparticle,  and  in  turn, (11) is  used to  translate  the 

spherical wave functions to  a coordinate  system whose origin  is the center of the  jthparticle. 

Note  that for non-touching  spheres,  the  observation  point, T,j will always be less than  the 

distance  between  the  origins of the two coordinate  systems, ‘Fji .  
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Figure 3: (a) scattering  from n spheres in the presence of n + n' spheres,  (b)  scattering  from 
sphere j in the presence of n + n' spheres. 

To develop the concept of a recursive algorithm,  the  T-matrix of a collection of spheres can 

be  written in terms of the  T-matrices of the  individual  components.  This new T-matrix is 

often referred to  as  the  aggregate  T-Matrix,  designated  as i. Extensive work  on the recur- 

sive technique for determining  this  quantity  has  been  performed at the University of Illinois 

[3,4,5,161. 

The  theory  behind  the recursive algorithm is as follows (see Figure 3).  We begin by assuming 

that  the  aggregate  scattering  matrix  from n spheres, 7c.1, has been determined (at the beginning 

of the  recursion,  when n = 0, the  aggregate  T-matrix, i(.) = 0). The  aggregate  T-matrix of 

these n spheres in the presence of an  additional n' spheres  can  be  written  as 

j=n+l 

where Fj(n+nq is the  T-matrix for the  jthparticle in the presence of n + n' particles  (including 

the  jthparticle  itself), Zi and  are vector translation  matrices  as  described above. Figure  3(a) 

illustrates  the different component  terms of (14).  Similarly, the  T-matrix of the  jthsphere, 

- 

referenced to  the origin,  may be written as 

The  components of (15) are  illustrated in Figure  3(b).  In  (14)  and  (15)  the principle  unknown 
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Figure 4: Illustration of (18). 

is the  scattering  matrix of the  jthparticle  in  the presence of n + n' scatterers  (i.e. Fj(n+n/)pjO). 
By substituting (14) into (15), an algebraic  expression can  be  written for these  unknowns 

- - 

where 

- - - 
Given a solution for Tj(n+n/) P j o ,  the  aggregate  T-matrix of n + n' scatterers is written  as (see 

Figure 4) 
n+n' - - - - - - - - 

T(n+n/) = Tn(n+n') + P o j  * Tj(n+n')  . P j o .  (18) 
j=n+1 

After  substituting  (14)  into  (18),  an expression can  be  written for the  aggregate  T-matrix in 

terms of known quantities, F(.) and Tj(n+n/) . P j o ,  
- - - 

The  critical  components of the recursive algorithm  are  (16),  (17),  and  (19).  The  first of these, 
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(16)  may be  written  as a matrix of matrices,  as  in 

which  can be  more concisely written  as 

or 

From the  above, (21) can  be used to solve for which can  then  be  substituted  into (23) to 

determine  the  aggregate  T-matrix. 

The recursive form of the  T-matrix  just derived  is a superset of direct  T-matrix  method de- 

scribed in [9,  14, 171. If, at the beginning of the  algorithm, n‘ = nmax, the  total  number of 

spheres  to  be  added,  (16), (18) and (19)  reduce to a single matrix inversion which is equivalent 

to  the direct  T-matrix  method.  The equivalence between the  multiple  scattering  equation  for 

the direct T-matrix  described by (10) and  the  T-matrix  algorithm  developed in this  paper, 

given by (15),  can  be seen by right  multiplying  (15) by ?Zinc and  making  the  substitution 

which  would make  the  initial  starting  point of the two methods  identical. 
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The dimension of the  arrays utilized in  the recursive T-matrix  method is an  important  param- 

eter.  Array  dimensions  are governed by the  order of the  dipole  moment used in calculating  the 

T-matrices of individual  scatterers,  denoted  as Kmax, the  order of the  dipole  moment used for 

the  aggregate  T-matrix,  denoted as P,,, and  the  number of new scatterers  added at each iter- 

ation, n'. For a given value of Kma, (or P,,,), there  are a total  number of K = 2Kmax(Kmax+2) 

(or P = 2Pm,(Pmax + 2 ) )  components of the electric field (the  factor of two  coming  from a 

combination of M and N vector  fields). The following table  lists  the  dimensions of the utilized 

by the recursive T-matrix  method in terms of these  components. 

Note that  the one matrix inversion that  must  be  performed for each iteration, is on z, which 

has  dimensions of n'K x n'K. For Rayleigh sized spheres, K,,, = 1, and  therefore a 6n' x 6n' 

matrix  must  be  inverted. Values of n' on the  order of 30 spheres  per  iteration will maintain 

the  matrix inversion within  reasonable  limits,  but  this will be at the sacrifice of some  accuracy 

(which will be  demonstrated in the  next  section). 

The  number of dipole moments required for the  aggregate  T-matrix is best  determined by the 

formula given  by Bohren  and Huffman [2] as 

where ko is the free space wave number  and A is the  radius of the  sphere enclosing the  total of 

n,, particles  comprising  the  medium  under  analysis. 

3.2 Limitations of the Recursive  T-Matrix  Algorithm 

The  T-matrix  algorithm  and  RATMA  are  numerically  exact in that if a sufficient number of 

terms of the  spherical wave expansion  are  retained,  and if the  machine precision is sufficient, 

an exact solution to Maxwell's equations will result.  Computational  limits however require a 

more  practical  solution to these  equations,  and  limits  must be put  on P,,, and K,,, as was 

alluded to above. 
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Experience  has shown that  the  direct  T-matrix  method converges to a unique  solution by 

implementing (25)  from  above for the value of P,,,, and K,,, = 1 to 3 for the  component 

spheres  (assuming  they  are less than one  wavelength).  Reducing P,, below the value specified 

in  (25) will have the effect of giving  erroneous  results, while using  an insufficient ITm, will 

constitute a loss of power  in the  system (i.e.  some  energy is lost in  the higher  order  terms of 

the  spherical wave expansion). 

The recursive T-matrix  approach  (RATMA) however has  another  set of limitations  with re- 

spect  to  the choice of p,,. This  limitation is not governed by (25) and  thus requires  special 

consideration.  This  limitation is best  illustrated by comparing  (16)  and (17)  derived  using the 

traditional  and recursive T-matrix  algorithms for the two-sphere problem. Using these  equa- 

tions,  it  can  be shown that  total  scattered field from the second  (outer)  sphere,  calculated  using 

the direct  T-matrix  approach,  can  be  expressed by 
- - - 
T 2 ( 2 )  * P 2 0  = T Z ( 1 )   [ E 2 1  * T l ( 1 )   a 1 2  * F 2 ( 2 ) F 2 0  + E 2 1  * T l ( 1 )  . PlO + P Z O ]  . 

- - - - - - - - - - 
(26) 

The difference between  these  two  equations lies in the vector translation  relationships given  by 

in matrix  notation, or 

in summation  notation.  In  the  above lTlol < I;F2oI and (31) is the  expanded  form of (28)  in 

terms of the vector addition  theorem coefficients given by [3,  pg. 5911. This  form of the  addition 
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theorem is shown  explicitly  in  summation  form here to highlight the fact that  the  summation 

is truncated  after P,,, terms  instead of the infinite bound given in (31). 

Returning  to  matrix  notation of (28) and (as), we see that  the  right-hand-side  performs  the 

operation of transferring vector spherical wave functions centered upon  one of the  spheres  to 

the origin and  then  translating  to  the  remaining  sphere. Given an infinite number of spherical 

harmonics  (i.e. P,, = c o ) ,  this would be equivalent to directly  transforming  the vector 

spherical wave functions  from  one  sphere  center to  the  other (i.e. the left hand side of (28)). 

When Pm, is finite however, the  relations given by (28) through (31) are  approximate,  and 

the convergence of this  relation  with respect to P,,, is a function of both  the  distance of the 

spheres  from the origin and  the  proximity of the  spheres  to  one  another.  This is due  to  the 

singular  nature of Hankel  functions at or near  the origin. 

The effect of this  limitation  can  be observed by calculating  the  diagonal  elements of E21 directly 

and  comparing  them  with  the  matrix  product E20 Fol as in (28). This  is  done in Figure 5 for 

three different values of F21 (X/10,2X/lO,  and 3X/10) and  three different limits for the  number 

of dipole moments used in the  spherical wave expansion (P,,,, P,, + 2, Pmax + 4), where the 

reference P,,, is determined by (25) and is related  to  the  magnitude of TzO which is fixed at 

X/2 in this  example. As IT211 gets  smaller,  the  imaginary  component of E21 increases due  to 

the  singularity of Hankel  functions when the  argument is nearly zero. This is shown for the 

first three  dipole  moments in Figure 5 for the  three different distances of F 2 1 .  As the  distance 

f z l  decreases, more  terms in the global coordinate dipole  expansion  are required to reconstruct 

the large imaginary  component of E21 from the  matrix  multiplication between E20 and pol. 
When  the value of F21 is  relatively large (3X/10), there  are a sufficient number of terms in the 

global dipole expansion to reconstruct E21. This  can  be seen in the lower set of three  plots 

of Figure 5. As the  scattering  centers get closer however, and F21 gets  smaller,  the  imaginary 

component of E21 increases and a larger  number of dipole moments in the global  expansion  are 

required to  maintain  accuracy of the dipole expansion.  Thus, for Rayleigh sized scatterers  and 

smaller,  spaced closely together,  the recursive T-matrix  algorithm requires an unrealistically 

large number of dipole  moments  to  accurately  account for the  interaction  between  scatterer 

centers. 

- 
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Figure 5: Limitations of RATMA. (a) Imaginary - component of the  diagonal  elements of E21 

computed  using  the  matrix  product .pol as in  (28) for three different values of I .  For each 
IF211 ( X / l O ,  2X/lO, and 3X/10), the  exact value of EEZ1 (-) is given alongside the  approximate 
values obtained by the  matrix  product  with different values for the  maximum  number of dipole 
moments used (see legend). P,,, is given  by (25). (b)  Physical  geometry used in the analysis. 
Shown are  the  three different particle  positions  (open circles) in relation  to  the fixed particle 
(shaded  circle),  and  the  distance, A for calculating P,,,. Particle  diameter is X/10 and A = X/2. 
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The consequence of this  limitation is that  the  accuracy of the recursive form of the  T-matrix 

algorithm in accounting for strong  interactions between  neighboring  spheres  depends  not  only 

upon  the value of specified in (25), but also on how closely together  the  spheres  are packed 

together  and how much they  are  expected  to  interact. For the two-sphere problem,  this  error 

can be on the  order of a one dB uniform loss (i.e. offset of power  over all  observation angles, as 

will be shown). For multiple  spheres, or random  media,  the  error is less predictable,  but overall 

it should  be  noted that  the  error  reduces  with increasing P,, and  decreasing  electromagnetic 

interaction between  particles.  Thus,  the  computational  advantage that  the recursive version of 

the  T-matrix  method  promises comes at the expense of solution accuracy. 

3.3 Two Interacting Sphere Example 

The following section  utilizes the recursive aggregate  T-matrix  (RATMA)  described in the pre- 

vious section to  demonstrate  the  limitation of RATMA  in recursively determining  the  scattered 

field from  two  strongly  interacting  spheres.  The electric field quantities  that will be shown are 

elements of the  scattering  matrix, STt, in the far field such that 

where f i r  and Ft from  above refer 

components of the electric field, M 

far field region are  approximated by 

to  the  transmit  and receive polarizations.  The  far field 

and N ,  comprising the  spherical basis functions, in the 

Two  scenarios are  considered for a pair of spheres aligned  along the z-axis (see Figure 6).  In 

the first scenario, the  spheres  are  adjacent  to  one-another so that  their  interaction is maximal. 

In  the second scenario,  the  position of one of the spheres is changed so that  its  radial  distance 

from the origin remains  the  same,  but  it is now on the  opposite side of the z = 0 plane.  This 

setup  guarantees  that  the  magnitude of the  translation  formulas used in both scenarios is the 
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Figure 6: Two  spheres aligned along  the x-axis. The  position of the  inner  sphere may be 
adjacent to  the  outer  sphere, or opposite of it  (as  shown).  In  the  example  that follows, the 
angle of observation is in the x = 0 plane  as  measured  from  the  incident field whose direction 
of propagation  is defined by the x-axis. 

same,  and  therefore  the  accuracy of the  translation  formulas will be  the  same between the two 

examples (the only difference between the examples is the degree of interaction between the 

two spheres).  The  solution for each configuration is performed  using the recursive algorithm 

and  the  direct  T-matrix inversion techniques. The  radii of the  spheres  are ka  = 0.63 and  the 

distance of the  outer  sphere  to  the origin is kd30 = 6.3 (thus = 1.3, kd32 = 11.3, and 

Pmax = 16; the value of P,,, was calculated by (25)). 

As shown  in the lower plot of Figure 7, the two non-interacting  sphere  simulation gives equiva- 

lent  results for both  the recursive and  traditional  T-matrix  approaches.  These  results have also 

been  shown to agree with  theoretical  results for non-interacting  spheres.  When  the  interaction 

between spheres becomes  significant however, we see a shift  between the result  obtained  from 

the direct  and recursive T-matrix  algorithms.  Furthermore,  the recursive method  more closely 

approximates  the  result given by the  traditional  method as the value of P,,, is increased, even 

though  the  minimal  value of Pmax specified by (25) has  been  surpassed. A form of this  limita- 

tion is mentioned by [6] as  being  due  to a violation of the  conditions for the vector addition 

theorem (specified in (11) through (13)). A violation of the vector addition  theorem  occurs 
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Figure 7: Scattered field (vv-pol)  from two offset spheres  centered  along the x-axis. Both  plots 
show results for both  the  traditional  T-matrix  approach  (labeled  "exact")  and  the recursive 
algorithm,  where P,, is  given. 

when a source  is  located  within the  boundary of the  aggregated  T-matrix.  The  geometry used 

in this  study  precludes  the  possibility of this  error  being  due  to  a  violation of the vector  addition 

theorem  and  illustrates  the  impact of the  approximation  described by (28) through (31). 

The  results shown  by the two-sphere example  illustrated by Figure 7 indicates a loss of energy 

in  the  system  when  using  the recursive T-matrix  algorithm.  This power loss can  be  directly  be 

attributed  to  truncation of the slowly convergent  infinite  series expansion  implied by (28). 

4 Three-dimensional Technique For Characterizing ceE 

The three-dimensional  technique  parallels  very closely the two-dimensional  version  already  dis- 

cussed.  In this  treatment, a fictitious  spherical  boundary is  used for its ease of implementation 
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and  the  ability  to use the  exact Mie series scattering  solution for a uniform  dielectric  sphere. 

Independent  Monte-Carlo  realizations of the  random  media  are  created by randomly  introduc- 

ing smaller spheres  within  the  fictitious  boundary  until  the desired  volume fraction is achieved. 

Once the  aggregate  T-matrix is determined,  an  incident field direction is chosen and  the  bistatic 

scattering  pattern for both  polarizations is calculated  and  averaged  with previously calculated 

fields. A single realization of particle  positions  (and  T-matrix  calculation)  can  be used to cal- 

culate  multiple  bistatic  scattering  patterns by slightly altering  the viewing geometry.  Some 

300 separate  scattered fields were calculated for each realization in this  manner.  The  resulting 

average field is then  matched  with  the Mie series solution for a uniform  dielectric  sphere  with 

the  same  diameter  as  the fictional boundary  to  determine  the effective permittivity. 

When  the  approach  to  the  three-dimensional  problem was first being  designed,  it was thought 

that  the recursive aggregate  T-matrix  algorithm  (RATMA)  developed in the previous  section 

would be  an ideal tool for the  analysis of effective permittivity  due  to  its  apparent  computational 

efficiency. As  was  discussed however, RATMA  is  limited  in its  ability  to efficiently calculate 

the  multiple  interactions between  two  neighboring spheres.  This  limitation  has  the effect of 

increasing the  scattering loss because  terms in the  spherical wave expansion  (i.e. energy) are 

eliminated in the vector translation  formulas.  This  problem is exacerbated  as  the volume 

fraction increases  because multiple  particle  interactions also  increase with  volume  fraction. 

Figure 8 demonstrates  this effect  by showing the average bistatic  scattered field from a 20% 

volume  fraction  medium confined to a fictitious  spherical  boundary  with a diameter of 1.3X 

using different quantities of spheres  that  are  added by RATMA at each  iteration.  The  direct T- 

matrix  solution  occurs when  all of the spheres are  added  during  the first iteration (i.e. n' = n,,,) 
and is assumed to  be numerically  exact.  The differences seen in  the  scattered field patterns 

calculated by RATMA  compared to  the direct  T-matrix  approach,  illustrated in Figure 8, 

are large  enough to  eliminate  the possibility of using  RATMA for the  purpose of determining 

effective permittivity. Basically, the  apparently  small  errors in the  bistatic  pattern  cause a 

significant error in determining  the  imaginary  part of the effective permittivity. 

The consequence of this  limitation is that only the  direct  T-matrix  algorithm  can be used for 

solving for the  scattered field from a collection of spheres.  The  direct  T-matrix however is 
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Figure 8: Scattered field magnitude  from 50 realizations of a 20% volume  fraction  random 
medium  calculated  using different values of n' (number of spheres  added at each iteration) 
using the recursive aggregate  T-matrix  algorithm.  When n' = nmax, RATMA is the equivalent 
of the direct T-matrix  algorithm  (in  this case nmax = 115). 

computationally  limited  because  it requires the inversion of a large matrix whose  dimension 

is directly  proportional to  the  number of spheres  that  compose  the  composite  scatterer.  In 

general, it is not feasible to  accommodate a large  number of spheres  into  the  direct  T-matrix 

algorithm;  thus,  an  upper  limit is placed  on the  diameter of the fictitious  spherical  boundary. 

This  limit is proportional  to (i) the volume fraction of the  scatterers  and  (ii)  the  diameter of 

the  subscatterers.  Because of these  limitations  it was necessary to  perform  an  in-depth sensi- 

tivity analysis to  determine if the coherent  scattered field is sufficiently sensitive to accurately 

determine  the effective permittivity.  This was done  using an  analytic Mie series solution for the 

scattering  from a dielectric  sphere  with  complex  permittivity. To detect a f O . O 1  change  in the 

imaginary  componenet of permittivity,  it was determined that approximately 8,000 scattered 

field calculations would be  necessary for a bounding  sphere  with a diameter of ICD = 4.2. For 

the  simulations  that follow, 10,000 scattered fields were averaged together  to  determine  the 

mean  scattered field. 
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4.1 Examples For Calculation Of eeff In  Three  Dimensions 

For the  example  that is about  to  be developed, glass spheres ( E  = 6.93 + 20.1) with a radius of 

X/10 are used as inclusions.  Glass beads  are chosen for this  demonstration for several  reasons, (i) 

this  material  has been measured  experimentally by [7], and  (ii)  the  dielectric  contrast between 

the glass and  the  background (free space) is sufficient to ensure that  the  beads  interact  strongly 

with  the  incident field. The  imaginary  component of the  sphere  permittivity serves to  attenuate 

the  scattered field, thus allowing the  number of included  spheres  necessary to achieve large 

number  statistics  to  be less than if the inclusions were lossless. 

In  the first set of examples,  the  beads  are placed randomly  within a fictitious  spherical  boundary, 

without  overlapping,  until  the desired  volume fraction is obtained  (volume  fractions  up  to 

40% may be  obtained in this  manner).  This  method of arranging  particles  within a space 

is equivalent to  the ideal fluid numerical  solution given by  [9] and is spherically  symmetric. 

The average  scattered field patterns  obtained  from 50 independent  realizations  and  the  best fit 

dielectric sphere  (diameter = 1.3X) solutions for 1076, 20%’ 30% and 40% volume  fractions were 

calculated.  Figure  9 gives a sample of these  results for the  large  volume  fraction case where 

it  can  be seen that  there is a good fit between the dielectric sphere  solution  and  the averaged 

scattered fields obtained  from  the  Monte-Carlo  simulations. 

A plot of the differences between the Mie scattering  solution  and  the  averaged  scattered fields 

from the  random  medium  as a function of both  the real and  imaginary  components of the 

homogeneous  sphere’s  permittivity is given in Figure 10. It  can  be seen from  this plot that 

there is a local minimum  within  the  realistic  range of real  and  imaginary  permittivity for the 

volume  fraction of 20%. Similar  behavior is observed at the lo%, 30%, and 40% volume fractions 

studied in this  section. 

4.2 Dependence on Volume Fraction  and  Particle Size 

The results of fitting  the Mie solution for the homogeneous  dielectric  sphere to  the coherent 

observed fields from the  random  medium  sample at different volume  fractions  and  particle sizes 

can  be  compiled  into a single plot  (similar to  the two-dimensional treatment in  [13]) and  the 
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Figure 9: Comparison  between  the average scattered fields for a random  medium  with 40% 
volume fraction (solid line)  and  the  best fit Mie solution for a homogeneous  dielectric  sphere 
(dashed  line)  with E,E = 1.90 + 20.048. 
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Figure 10: Contour  and gray-scale plot of the differences between the Mie solution for a dielectric 
sphere  and  the  averaged  scattered field obtained  from  the  random  medium  as a function of real 
and  imaginary effective permittivity.  In  this  example  the  volume  fraction is 20% and  the 
permittivity of the inclusions is E = 6.93 + iO.l. Dark  areas  represent  areas  where  the difference 
is the least  between the two  solutions. 
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results  compared to  theoretical  methods. For the three-dimensional  treatment discussed  here, 

the scope of this  comparison is currently  limited  to  a  narrow  range of particle sizes and volume 

fractions  due to  computational  considerations,  the  origins of which are discussed in  the following 

section.  In  this  context,  it is  possible to explore  volume  fractions  ranging  from 10% to 40% 

and  particle sizes  whose radius at 10 GHz varies  from 3 mm  to 3.5 mm (i.e.  diameter varies 

from X/5 to X/4.3). This  range is sufficient enough to  explore the effects of increased  scattering 

losses due to  larger  particle sizes and  the behavior of both  the real  and  imaginary  components 

of effective permittivity  as a function of particle  density. 

Fundamental  quantities of interest over which to  compare to  theoretical  methods  are  the effec- 

tive  refractive  index ( n , ~  = 6) and  the normalized  extinction coefficient given by 

~ , / k  = 2Im(&). (35 )  

The real  part of n,ff is directly  proportional  to  the  phase  delay of an  electromagnetic field as  it 

passes through  the  random  medium  and is a measure of the power lost  into  the  incoherent 

field. Figure 11 illustrates  the  numerically  calculated  results  and  provides a comparison  to  the 

theoretical  models of the quasi-crystalline  approximation  with  coherent  potential  (QCA,  solid 

lines),  the effective field approximation (EFA, dashed  lines),  and  the  Polder Van Santen  mixing 

formula  (PVS,  dotted  line). 

The first  plot of Figure 11 compares  the  real  component of n,E, which  is not  expected to  vary 

strongly  as a function of particle size. This is a characteristic  that is common  between the 

theoretical  and  numerical  method  results.  The  three  separate  dashed lines in  this  plot  indi- 

cate  theoretical  results  from  the effective field approximation for the  three different particle 

sizes, with  the effect of increasing  particle size causing an increase  in  real  refractive  index. 

The numerical  results  obtained  fall closely between the effective field approximation  and  the 

Polder-Van Santen  mixing  formula  using a background  dielectric of free space.  The  numerical 

calculations seem to  indicate  that  the behavior of the fields near  the  inclusions, at these volume 

fractions,  experience the full  dielectric  contrast  between  the  inclusions  and  the  host  material 

rather  than  the  dielectric  contrast  between  the  included  material  and  the effective permittivity 

of the  random  medium.  At  some  point,  not  modeled  here,  it is expected  that  this  behavior 

should  change  as  volume  fraction  increases and  the  medium becomes  one dominated by inclu- 
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sions rather  than  the spaces  between  inclusions.  In  this  case, the  background dielectric  would 

no longer be similar to  that  of free space  (as  the  numerical  technique  in  this  example would 

indicate)  rather  it would be closer to  that of the effective permittivity, €,E. The  manner in 

which  particles  are  arranged  within  the volume  may have an effect on  this  behavior,  as in this 

example,  where  the  method of particle  arrangement  maximizes  the  average  distance between 

inclusions. 

The second plot of Figure 11 displays the normalized  extinction coefficient given by (35)  which 

reflects the power  lost to  the incoherent field. The numerical  method is compared  with  the 

theoretical  methods of the  quasi-crystalline  approximation  with  coherent  potential  and  the ef- 

fective field approximation  (the  supposed  upper  limit).  Each of the  method  results is  given in 

sets of three for each of the  three  particle sizes used (radius, a = 3,3.25,3.5  mm at 10 GHz  or 

k a  = 0.63, 0.68 and  0.73),  with  the  larger  particle sizes having  the effect of increasing ~ , / k  for 

all  three  methods.  It is evident from  this  illustration  that at 10% volume  fraction,  that  the nu- 

merical method  and  QCA-CP agree closely for the  three  particle sizes, while as  particle  density 

increases, the two methods diverge with  QCA-CP  predicting lower scattering losses than  the 

numerical  method.  This likely reflects the  natural  limitation of QCA-CP  to  address  particle in- 

teractions  that occur  in  groups  larger than two  (i.e. QCA  models  multiple  interactions between 

pairs of particles  and  excludes  the effect three or greater  particle  interactions).  This  change 

occurs  most  predominantly for volume fractions of 25% and  greater  and is more  pronounced for 

larger  particle sizes, an  unsurprising result given that  the general accepted  limitation for QCA 

is for ka  less than 0.2 or  0.3. 

4.3 Limitations of the Three-Dimensional  Technique 

In  the  previous  sub-section,  the  coherent  numerical  method  presented  in  this  chapter was used to 

compare  with  similar  results  obtained  using  theoretical  methods for determining  the  extinction 

coefficient. In  this  manner,  the  numerical  technique was used to  explore  the  limitations of the 

other  methods.  The  three-dimensional  determination of effective permittivity however, has  its 

own set of limitations,  that  are  imposed  due  to  computational concerns. Figure 12 attempts 

to graphically display these  limits  as  they have been  explored thus far  and to  illustrate  those 
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Figure 11: Real  refractive  index and normalized  extinction coefficient comparison between the 
numerical  method  (symbols)  and  the  theoretical  techniques of quasi-crystalline  approximation 
with  coherent  potential (solid  lines) and  the effective field approximation  (dashed  lines) for 
three  particle  radii  ranging  from ka  = 0.63 to  0.73.  Normalized  extinction  (shown  in the lower 
plot)  consistently  increases  with  particle size for all  three  methods  shown.  In  this series of 
numerical  experiments, P,,, = 17. 
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points  that have been  demonstrated in the previous  sub-section (indicated by x’s). 

The lower limit of the  bounded region is labeled as N,, in reference to  the  fact  that  the direct 

T-matrix  cannot  simultaneously solve for more  than 150 Rayleigh sized spheres on a Convex 

MPP-1000  parallel  computer  with  approximately 500 mega-bytes of random access memory. 

Using less spheres would  require the use of a smaller  bounding  sphere,  thus decreasing the 

sensitivity of the  coherent  method  to  the  imaginary  component of effective permittivity. 

The volume fraction  limit, labeled as “Packing  Method” refers to  an  upper  limit  on  the volume 

fraction that  can  be  obtained  using  the  random  introduction of spheres  into  an  empty  space 

(Le. simulation of the Percus-Yevick pair  distribution  function for an ideal  fluid).  While  other 

packing  algorithms  may  be used to  surpass  this  limit,  the  isotropy of the  medium  can no 

longer be  guaranteed [la], and in turn, it may  no longer be  acceptable to  alter  the geometry 

of the  incident field and  the  plane of observation to  obtain a sufficient number of independent 

samples.  This would have the effect of increasing the  number of independent  realizations  to 

an  impractical  number,  and  thus  the average scattered field may  not  be  representative of a 

homogeneous  dielectric. 

The  upper  limit which dictates  the  maximum  radius allowed for the inclusions is imposed 

because  larger  inclusions  require  more  terms  in the  spherical wave expansion (Kmax) in addition 

to  the fact that a large  boundary  dimension  may  be required to  enclose a sufficient number 

of inclusions to  accurately represent the  random  medium.  This  large  boundary is limited 

by the  maximum  number of spherical waves (Pmax) computationally allowed to represent the 

aggregated  T-matrix (for our facilities, this was approximately 20). 

5 Conclusions and  Recommendations 

In  this  paper, a three-dimensional  coherent field technique for determining effective permittivity 

for random  media was  developed. We began by illustrating  the success of this  method for 

addressing a two-dimensional  problem  and then discussed in-depth  the  three-dimensional T- 

matrix  numerical  technique  that was to be  applied for solving Maxwell’s equations.  One possible 

version of this  technique, RATMA, was demonstrated  to  be insufficient for addressing  this 
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Figure 12: Illustration of the volume  fraction  and  particle  radius  limits for the  determination 
of effective permittivity  using  the  coherent  method in three  dimensions. X’s illustrate  those 
points  that have been  calculated in the previous  sub-sections  (i.e. radius = 3mm  to  3.5mm  and 
volume fraction  ranging  from 10% to 40%). The observing  frequency is 10 GHz (X =3  cm). 

problem. 

For the numerical  technique  itself,  between 30 and 50 independent  realizations of the  random 

medium were required to converge on a representative  coherent field. This  coherent field can  be 

used to  determine effective permittivity.  A  complete  example was illustrated  using  a  particle 

diameter of X/5 (radius, a = 3  mm at 10 GHz) for volume fractions  ranging  from  10% to 40% 

where it was shown that  the average  scattered field obtained  from  the  Monte-Carlo  simulations 

agreed well with a Mie series solution for a homogeneous  dielectric  sphere.  Additionally, the 

differences between the Mie series solution  and  the  averaged  scattered field  were shown to have 

an isolated  local minimum  within  the physical range of E,E for a  representative  volume  fraction 

of 20%. This  example was then  expanded  to include  two other  particle  diameters of X/4.6 ( a  = 
3.25 mm)  and X/4.3 ( a  = 3.5  mm)  where a comparison was made  between  the  numerical  method 

and  the  theoretical  methods of the  quasi-crystalline  approximation  with  coherent  potential  and 

the effective  field approximation.  It was shown that  the numerical  method  predicted a lower real 

component of the  index of refraction  than  these  theoretical  models  and  predicted  an  extinction 

coefficient that agreed well with  QCA-CP at low volume fractions  and  the  smaller of the particle 

diameters.  At  higher  volume  fractions  and  large  particle  diameters,  the  numerical  technique 

indicates larger scattering losses, with a higher  order of particle  interaction  than  QCA-CP 
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theoretically  accounts for (i.e.  two-particle interactions). 

A discussion was then  provided  regarding  the  current  limitations of the  coherent  technique in 

three  dimensions.  These  limitations  are  imposed by the  computational  technique  that  has been 

implemented  (direct  T-matrix  approach)  and  may  be  broadened as the  technique is used to 

explore a wider range of problems. It is recommended that  the  technique  is  expanded/verified 

in the  future by (i)  exploring a variety of different boundary  shapes  and sizes to maximize the 

sensitivity of the  coherent field technique to  the  imaginary  component of effective permittivity 

(the dielectric slab used in  two  dimensions  seems to  be  one such  possibility),  (ii)  implementing 

and  comparing  alternative  numerical  techniques for solving scattered fields and (iii)  using the 

results that have been  obtained in the  this  paper  to explore theoretical/numerical  methods of 

reducing the  computational  burden  that a full Monte-Carlo  simulation  that  the  problem  entails. 
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